Large-Scale and Large-Time Behaviour of Mean-Field Interacting Particle Systems on Block-structured Networks

Speaker: Yiqiang Q. Zhao

School of Mathematics and Statistics Carleton University

at 16th Workshop on Markov Processes and Related Topics July 16, 2021

(Based on joint research with Don Dawson and Ahmed Sid-Ali)

Carleton Speaker: Yigiang Q. Zhao (Carleton U) [Workshop on MPRT](#page-37-0) and at Central South University 1 / 37

Overview

[Mean-field model: The homogeneous case](#page-2-0)

- [Mean-field Models: Heterogeneous case](#page-7-0)
- [Large scale behavior](#page-13-0)
- [Large time behavior](#page-18-0)

Outline

[Mean-field model: The homogeneous case](#page-2-0)

[Mean-field Models: Heterogeneous case](#page-7-0)

[Large scale behavior](#page-13-0)

[Large time behavior](#page-18-0)

Interacting particle systems and mean-field approach

- \blacksquare The interest in IPS started with statistical physics
- **Pioneer works: Boltzmann, Vlasov, Curie, Wisse, Ising, and** others
- **The purpose: Understand the global (average) behavior of a** very large number of particles interacting with each other
- **The mean-field approach aims to obtain a smaller object** through an average over the interactions (dimension reduction!)
- **Pioneer work: McKean [1966] studied the mean-field** approach for interacting diffusions

Interacting particle systems and mean-field approach

- \blacksquare The interest in IPS started with statistical physics
- **Pioneer works: Boltzmann, Vlasov, Curie, Wisse, Ising, and** others
- The purpose: Understand the global (average) behavior of a very large number of particles interacting with each other
- The mean-field approach aims to obtain a smaller object through an average over the interactions (dimension reduction!)
- **Pioneer work: McKean [1966] studied the mean-field** approach for interacting diffusions

Classical mean-field model

- \blacksquare N symmetric (in distribution) particles interacting with each other
- **The state space of each particle is** \mathcal{Z} : Discrete or Continuous
- $X_n^N(t)$: state of the *n*th particle at time t (a Markov chain)
- \blacksquare Due to symmetry of the particles, to describe the system, it is enough to use the coupled dynamics, or the empirical distribution of all particles across states:

$$
\mu^N(t) = \frac{1}{N} \sum_{n=1}^N \delta_{X_n^N(t)} \in \mathcal{M}_1(\mathcal{Z}), \quad \text{space of prob. measures on } \mathcal{Z}
$$

 \Rightarrow Gives the fraction of particles in each subset of \mathcal{Z} .

A picture of global interactions:

Classical Mean-field model: classical results

- **Example of the state space: if** $\mathcal{Z} = \{1, ..., K\}$ (finite state) Let $\Lambda(\mu^{\mathsf{N}}(t)) = (\lambda_{z,z'}(\mu^{\mathsf{N}}(t)))_{(z,z')\in\mathcal{Z}\times\mathcal{Z}}$ be the rate matrix over Z (depends on the empirical measure!)
- Law of Large numbers: for each $\mathcal{T} > 0$, $\mu^{\mathcal{N}}(\cdot) \rightarrow \mu(\cdot)$ in probability uniformly on [0, T], where $\mu(\cdot)$ solves the McKean-Vlasov equation

$$
\dot{\mu}(t) = \Lambda(\mu(t))^* * \mu(t),
$$

$$
\mu(0) = \nu
$$

where the coefficients of the SDE depend on the distribution of the solution

- **Propagation of chaos:** if the particles are initially iid, and we tag finite k particles, then their evolution is asymptotically iid over any finite time interval!
- **Consequence:** the study of one particle gives information on the behavior of the population Speaker: Yigiang Q. Zhao (Carleton U) [Workshop on MPRT](#page-0-0) and at Central South University 6 / 37

Outline

[Mean-field model: The homogeneous case](#page-2-0)

[Mean-field Models: Heterogeneous case](#page-7-0)

[Large scale behavior](#page-13-0)

What if the interaction graph is not complete?

- **B** Suppose the interaction graph is not complete, i.e. not all particles interact with each other!
- **Things get more complicated!** Why: we lose the global symmetry between particles
- What to do: detect local symmetries and average around them!
- Special case of interest: block-structured graphs!

The model: Structure of the graph

- **n** Consider a block-structured graph $\mathcal{G} = (\mathcal{V}, \Xi)$, composed of r blocks (populations) and each node representing a particle
- Each block \mathcal{C}_{j} is a clique, i.e. all the N_{j} nodes are connected to each other
- The nodes of each block C_i are divided into two categories:
	- **Central nodes** C_j^c : connected only to the nodes of the same block
	- **Peripheral nodes** C_j^p : connected to the nodes of the same block and also to peripheral nodes of the other blocks

We have
$$
card(C_j^c) = N_j^c
$$
 and $card(C_j^p) = N_j^p$

The model dynamic

■ Finite state space: $\mathcal{Z} = \{1, 2, ..., K\} \subset \mathbb{N}$ (colors) For each block j , $(X_{n,j}^c(t),t\geq 0)$ is the color of central (particle) node *n* at time *t*; (X_n^p) $\binom{P}{n,j}(t),$ $t\geq 0)$ is the color of peripheral node n at time t

■ We characterize the system's state by local empirical measures:

$$
\mu_j^{c,N}(t) = \frac{1}{N_j^c} \sum_{n \in C_j^c} \delta_{X_{n,j}^c(t)}
$$

$$
\mu_j^{p,N}(t) = \frac{1}{N_j^p} \sum_{n \in C_j^p} \delta_{X_{n,j}^p(t)}
$$

■ Fix a block $1 \leq i \leq r$: The neighborhood's state of $n \in \mathcal{C}^c_j$ is characterized by $\mu_j^{\boldsymbol{c},\boldsymbol{N}}(t)$, $\mu_j^{p,\boldsymbol{N}}(t)$ (only nodes in the same block) The neighborhood's state of $n\in \mathcal{C}^P_j$ is characterized by $\mu_j^{c,N}(t)$; $\mu_1^{p,N}(t)$, $\mu_2^{p,N}(t)$, \dots , $\mu_r^{p,N}(t)$ (nodes in the same block and peripheral nodes in other blocks) Carleton Speaker: Yigiang Q. Zhao (Carleton U) [Workshop on MPRT](#page-0-0) at Central South University 10 / 37

The model dynamic

The central nodes transitions. For $n \in C_j^c$, its color $X_{n,j}^c(t)$ goes from z to z' at rate:

$$
\lambda_{z,z'}^c(\mu_j^{c,N}(t),\mu_j^{p,N}(t))
$$

The peripheral nodes transitions. For node $n \in C_i^p$ $\int\limits_{j}^{\prime\prime}$, its color X_n^p $\sum_{n,j}^{\infty} (t)$ transits from *z* to *z'* at rate:

$$
\lambda_{z,z'}^p(\mu_j^{c,N}(t),\mu_1^{p,N}(t),\mu_2^{p,N}(t),\ldots,\mu_r^{p,N}(t))
$$

Some additional notations:

- $\mathcal{D}([0,T],\mathcal{Z})$ the Skorokhod space of *cadlag* functions from $[0, T]$ to $\mathcal Z$
- \blacksquare $\mathcal{M}_1(\mathcal{D}([0, T], \mathcal{Z}))$ the set of probability measures on $\mathcal{D}([0,T],\mathcal{Z})$

Speaker: Yigiang Q. Zhao (Carleton U) [Workshop on MPRT](#page-0-0) at Central South University 11 / 37

SDE representation of the system

The Markov chains $X_{n,j}^c$ and $X_{n,j}^p$ $\sum_{n,j}^{\nu}$ can be represented by the following system of SDE's

$$
\begin{split} X^c_{n,j}(t) &= X^c_{n,j}(0) + \int\limits_{[0,t] \times \mathbb{R}_+} \sum\limits_{(z,z') \in \mathcal{E}} \mathbbm{1}_{X^c_{n,j}(s-) = z}(z'-z) \mathbbm{1}_{\left[0,\lambda^c_{z,z'}\left(\mu^{c,N}_j(s-),\mu^{p,N}_j(s-)\right)\right]}(y) \mathcal{N}^c_{n,j}(ds,dy) \\ X^p_{n,j}(t) &= X^p_{n,j}(0) + \int\limits_{[0,t] \times \mathbb{R}_+} \sum\limits_{(z,z') \in \mathcal{E}} \mathbbm{1}_{X^p_{n,j}(s-) = z}(z'-z) \mathbbm{1}_{\left[0,\lambda^p_{z,z'}\left(\mu^{c,N}_j(s-),\mu^{p,N}_1(s-),\ldots,\mu^{p,N}_r(s-)\right)\right]}(y) \mathcal{N}^p_{n,j}(ds,dy) \end{split}
$$

where $\{\mathcal{N}_{n,j}^c,n\in\mathcal{C}_j^c,1\leq j\leq r\}$ and $\{\mathcal{N}_{n,j}^{\boldsymbol{\rho}},n\in\mathcal{C}_j^{\boldsymbol{\rho}}\}$ $j^{\rho}, 1\leq j\leq r\}$ are collections of Poisson random measures on \mathbb{R}^2 whose intensity measure is the Lebesgue measure on \mathbb{R}_+^2

Speaker: Yigiang Q. Zhao (Carleton U) [Workshop on MPRT](#page-0-0) at Central South University 12 / 37

Outline

[Mean-field model: The homogeneous case](#page-2-0)

[Mean-field Models: Heterogeneous case](#page-7-0)

[Large scale behavior](#page-13-0)

Large-scale behavior: Multi-chaoticity

Recall: Propagation of chaos means that the stochastic independence of fixed k particles persists as the number of particles goes to infinity

Theorem

Suppose that the initial conditions converge in distribution towards $\nu^{1,c}\otimes\nu^{1,p}\cdots\nu^{r,c}\otimes\nu^{r,p}.$ Therefore, under some regularity conditions, the propagation of chaos (in multi-populations) holds over any finite interval of time, i.e. for any $k > 1$,

$$
\lim_{N\to\infty}(X_{n,j}^c,X_{n,j}^p,1\leq n\leq k,1\leq j\leq r))\stackrel{dist}{=}(\mu_1^c)^k\otimes(\mu_1^p)^k\cdots(\mu_r^c)^k\otimes(\mu_r^p)^k
$$

holds for the topology of the uniform convergence on compact sets, where $\mu = \mu_1^c \otimes \mu_1^p$ $\mu_1^{\rho} \cdots \mu_r^{\rho} \otimes \mu_r^{\rho}$ is the distribution of the process $((\bar{X}_{n,j}^{c}(t),\bar{X}_{m,j}^{p}(t),t\geq 0),n\in C_{j}^{c},m\in C_{j}^{p})$ $j^{\rho};$ $1\leq j\leq r)$, solution of a limiting SDE with initial distribution $\nu^{1,c} \otimes \nu^{1,p} \cdots \nu^{r,c} \otimes \nu^{r,p}$

Carleton Speaker: Yigiang Q. Zhao (Carleton U) [Workshop on MPRT](#page-0-0) at Central South University 14 / 37

Large-scale behavior: Multi-chaoticity

The limiting process $\big((\bar{X}_{n,j}^c(t), \bar{X}_{n,j}^p(t), t \in [0,\, \mathcal{T}]), 1 \leq j \leq r\big)$ is solution of the following system of SDE's

$$
\bar{X}_{n,j}^c(t)=\bar{X}_{n,j}^c(0)+\smallint_{[0,t]\times\mathbb{R}_+}\sum_{(z,z')\in\mathcal{E}}1\bar{X}_{n,j}^c(s-) =z(z'-z)1\Big[_{0,\lambda_{z,z'}^c\big(\mu_j^c(s-),\mu_j^p(s-)\big)\Big]}(y) \mathcal{N}_{n,j}^c(ds,dy),
$$

$$
\bar{X}_{n,j}^{\rho}(t) = \bar{X}_{n,j}^{\rho}(0) + \int_{[0,t] \times \mathbb{R}_+} \sum_{(z,z') \in \mathcal{E}} 1_{\bar{X}_{n,j}^{\rho}(s-) = z} (z'-z) 1_{\left[0,\lambda_{z,z'}^{\rho}\left(\mu_j^c(s-),\mu_1^{\rho}(s-),\ldots,\mu_r^{\rho}(s-)\right)\right]}(y) \mathcal{N}_{n,j}^{\rho}(ds,dy)
$$

where

$$
\mu = (\mu_1^c, \mu_1^p, \cdots, \mu_r^c, \mu_r^p) = \left(\mathcal{L}(\bar{X}_{n,1}^c), \mathcal{L}(\bar{X}_{n,1}^p), \ldots, \mathcal{L}(\bar{X}_{n,r}^c), \mathcal{L}(\bar{X}_{n,r}^p) \right) \in \left(\mathcal{M}_1(\mathcal{D}([0, T], \mathcal{Z})) \right)^{2r},
$$

Carleton Speaker: Yigiang Q. Zhao (Carleton U) [Workshop on MPRT](#page-0-0) at Central South University 15 / 37

Large-scale behavior: Laws of Large Numbers

As a consequence of the propagation of chaos result, we obtain laws of large numbers for the local empirical measures

Corollary (LLN)

Denote $\mu_j^c = \mathcal{L}(\bar{X}_{n,j}^c), \mu_j^p = \mathcal{L}(\bar{X}_{n,j}^p)$ for $1 \leq j \leq r,$ then, as $N \rightarrow \infty$.

$$
\mu_j^{c,N} = \tfrac{1}{N_j^c} \sum_{n \in C_j^c} \delta_{X_{n,j}^c} \to \mu_j^c \quad \text{in} \quad \mathcal{M}_1(\mathcal{D}([0,T],\mathcal{Z})) \quad \text{in probability},
$$

$$
\mu_j^{p,N} = \tfrac{1}{N_j^p} \sum_{n \in C_j^p} \delta_{X_{n,j}^p} \to \mu_j^p \quad \text{in} \quad \mathcal{M}_1(\mathcal{D}([0,T],\mathcal{Z})) \quad \text{in probability},
$$

Speaker: Yigiang Q. Zhao (Carleton U) [Workshop on MPRT](#page-0-0) at Central South University 16 / 37

Law of Large numbers: Consequence

From the LLN, we deduce that, as $N \to \infty$, the sequence $(\mu^N = (\mu_1^{c,N})$ $_{1}^{c,N},\mu _{1}^{p,N}$ $\mathcal{L}_1^{\rho,N},\ldots,\mathcal{\mu}_r^{\rho,N},\mathcal{\mu}_r^{\rho,N})$) converges weakly towards the solution μ of the McKean-Vlasov system

$$
\left\{\begin{array}{ll}\dot{\mu}_j^c(t)=A_{(\mu_j^c(t),\mu_j^p(t))}^*(\mu_j^c(t),\\ \dot{\mu}_j^p(t)=A_{(\mu_j^c(t),\mu_1^p(t),\ldots,\mu_r^p(t))}^*(\mu_j^p(t),\\ \mu_j^c(0)=\nu_j^c,\mu_j^p(0)=\nu_j^p,\\ 1\leq j\leq r,\, t\in[0,\,T],\end{array}\right. \tag{1}
$$

where A^* is the adjunct/transpose of A , and

$$
A_{\mu_j^c(t),\mu_j^p(t)} = \left(\lambda_{z,z'}^c(\mu_j^c(t),\mu_j^p(t))\right)_{(z,z')\in\mathcal{Z}\times\mathcal{Z}}
$$

is the rate matrix for central nodes in block j, and

$$
A_{\mu_j^c(t),\mu_1^p(t),\dots,\mu_r^p(t)}=\left(\lambda_{z,z'}^p(\mu_j^c(t),\mu_1^p(t),\dots,\mu_r^p(t))\right)_{(z,z')\in\mathcal{Z}\times\mathcal{Z}},
$$

 \mathbf{r} Carlist cate matrix for peripheral nodes in block j Speaker: Yigiang Q. Zhao (Carleton U) [Workshop on MPRT](#page-0-0) at Central South University 17 / 37

Outline

[Mean-field model: The homogeneous case](#page-2-0)

- [Mean-field Models: Heterogeneous case](#page-7-0)
- [Large scale behavior](#page-13-0)
- [Large time behavior](#page-18-0)

Large time behavior: A high level picture

■ From LLN, as $N \to \infty$ **.**

 $\mu^{\mathsf{N}}(t) = (\mu_j^{\mathsf{N},c}(t), \mu_j^{\mathsf{N},p}(t), 1 \leq j \leq r) \rightarrow \mu(t) = (\mu_j^c(t), \mu_j^p(t), 1 \leq j \leq r)$

 \blacksquare Thus:

$$
\lim_{t\to\infty}\left[\,\lim_{N\to\infty}\mu^N(t)\right]\to\lim_{t\to\infty}\left[\mu(t)\right]
$$

 \Rightarrow amount to a study the McKean-Vlasov system

$$
\blacksquare \text{ What about } \lim_{N \to \infty} \big[\lim_{t \to \infty} \mu^N(t) \big]?
$$

- For N fixed: if μ^N is irreducible then there exists a unique stationary distribution $\wp^{\sf N}$ for $\mu^{\sf N}$
- What happened for \wp^N when $N\to\infty$? \Rightarrow Study the large deviations of $(\wp^N,N\geq 1)$

LDP for the stationary distribution

- Two distinct scenarios depending on the large time behavior of the McKean-Vlasov system:
	- **u** Unique globally asymptotically stable equilibrium ξ_0 : one might prove that $\wp^{\sf N} \to \delta_{\xi_0}$, i.e. $\mu^{\sf N}(\infty) \to \xi_0$ in distribution
	- **Multiple** ω -limit sets: which of these characterize the limiting behavior of $\mu^{\textsf{N}}$?

In this case we assume that there exist a finite number of compact sets K_1, K_2, \ldots, K_ℓ such that every ω -limit set of the McKean-Vlasov system lies completely in one of the compact sets \mathcal{K}_i . (Hypothesis of Freidlin-Wantzell).

Case 1: Unique GAS equilibrium ξ_0

Theorem

If the McKean-Vlasov equation has a unique globally asymptotically stable equilibrium ξ_0 , then the sequence $(\wp^N, {\sf N} \geq 1)$ satisfies a LDP with speed ${\sf N}$ and a good rate function s given by

$$
s(\xi) = \inf_{\hat{\mu}} \sum_{j=1}^r \left[\alpha_j p_j^c \int_0^{+\infty} \Big(\sum_{(z,z') \in \mathcal{E}} (\hat{\mu}_j^c(t)(z)) \lambda_{z,z'}^c(\cdot) \tau^* \Big(\frac{\hat{\mu}_{z,z'}^c(t)}{\lambda_{z,z'}^c(\cdot)} - 1 \Big) \Big) dt + \alpha_j p_j^p \int_0^{+\infty} \Big(\sum_{(z,z') \in \mathcal{E}} (\hat{\mu}_j^p(t)(z)) \lambda_{z,z'}^p(\cdot) \tau^* \Big(\frac{\hat{\mu}_{z,z'}^p(t)}{\lambda_{z,z'}^p(\cdot)} - 1 \Big) \Big) dt \right]
$$

where the infimum is over all the infinite paths $\hat{\mu}$ that are solutions to the reversed-time dynamical system

$$
\begin{aligned}\dot{\hat{\mu}}^c_j(t) &= -\hat{L}_{j,c}(t)^*\hat{\mu}^c_j(t),\\ \dot{\hat{\mu}}^p_j(t) &= -\hat{L}_{j,p}(t)^*\hat{\mu}^p_j(t),\end{aligned}
$$

for some family of rate matrices $\hat{L}_{i,c}$ and $\hat{L}_{i,p}$, with initial condition $\mu(0) = \xi$, terminal condition $\lim_{t\to\infty}\mu(t)=\xi_0$, and $\mu(t)\in (\mathcal{M}_1(\mathcal{Z}))^{2r}$ for all $t\geq 0$. Speaker: Yigiang Q. Zhao (Carleton U) [Workshop on MPRT](#page-0-0) at Central South University 21 / 37

The intuition behind the previous result

From LDP of $\wp^{\mathcal{N}}$, for a given $\xi\in (\mathcal{M}_1(\mathcal{Z}))^{2r}$,

$$
\mathbb{P}(\mu^N(+\infty) \approx \xi) \approx \exp(-Ns(\xi)), \text{ as } N \to +\infty
$$

 \Rightarrow The rate function s characterizes the "difficulty" of the passage of $\mu^{\sf N}(+\infty)$ near ξ

Interpretation of previous theorem: if $\mu^{\sf N}(+\infty)$ is near ξ , then this is most likely due to a trajectory that began at ξ_0 , worked against the attractor ξ_0 , and took the lowest cost path $\hat{\mu}$ to ξ over all possible time duration

Case 2: Multiple ω -limit sets

■ Under Freidlin-Wantzell hypothesis: We obtain a similar result but now we also take the infimum over all the compact sets $K_i!$

Case 2: Multiple ω -limit sets (Cont'd)

Theorem

The sequence of stationary distributions $(\wp^N, N \geq 1)$ satisfies the LDP with speed N and a good rate function s given by

$$
s(\xi) = \inf_{l'} \inf_{\hat{\mu}} \left[s_{l'} + \sum_{j=1}^r \left[\alpha_j p_j^c \int_0^{+\infty} \left(\sum_{(z,z') \in \mathcal{E}} (\hat{\mu}_j^c(t)(z)) \lambda_{z,z'}^c (\cdot) \tau^* \left(\frac{\hat{\mu}_{z,z'}^c(t)}{\lambda_{z,z'}^c (\cdot)} - 1 \right) \right) dt + \alpha_j p_j^p \int_0^{+\infty} \left(\sum_{(z,z') \in \mathcal{E}} (\hat{\mu}_j^p(t)(z)) \lambda_{z,z'}^p (\cdot) \tau^* \left(\frac{\hat{\mu}_{z,z'}^p(t)}{\lambda_{z,z'}^p (\cdot)} - 1 \right) dt \right] \right]
$$

where the constants s_{l^\prime} determine the "difficulty" of passage from one compact set to another, and the second infimum is over all $\hat{\mu}$ that are solutions to the reversed-time dynamical system

$$
\begin{aligned} \dot{\hat{\mu}}^c_j(t) &= -\hat{L}_{j,c}(t)^*\hat{\mu}^c_j(t),\\ \dot{\hat{\mu}}^p_j(t) &= -\hat{L}_{j,p}(t)^*\hat{\mu}^p_j(t), \end{aligned}
$$

for some family of rate matrices $\hat{L}_{i,c}$ and $\hat{L}_{i,p}$, with initial condition $\mu(0) = \xi$, tegyninal condition $\lim_{t\to\infty}\mu(t)\in K_{l'}$, and $\mu(t)\in (\mathcal{M}_1(\mathcal{Z}))^{2r}$ for all $t\geq 0.$ Speaker: Yigiang Q. Zhao (Carleton U) [Workshop on MPRT](#page-0-0) at Central South University 24 / 37

Phenomena from one ω -limit set to another

Let's summarize:

- From LLN: as $N\to\infty$, $\mu^N\to\mu\Rightarrow$ Use McKean-Vlasov equation to study the large t behavior
- As $t\to\infty$, $\mathcal{L}(\mu^{\mathsf{N}}(\infty))=\wp^{\mathsf{N}}\Rightarrow$ Use LDP results to study large N behavior of \wp^N
- What about: lim $_{t\rightarrow\infty}\,\mu^\mathcal{N}(t)$ for large but finite $\mathcal{N}?$ \Rightarrow If multiple ω -limit sets for McKean-Vlasov, we observe metastable phenomena
- **n** Metastable behavior: transitions and exit times from one ω -limit set to another!

 \Rightarrow Freidlin-Wentzell approach: rely on the study of an embedded Markov chain of states at hitting times of neighborhood of the ω -limit sets

Metastable phenomena: some ideas

Adapting the Freidlin-Wentzell approach: view the finite N system $\mu^{\textstyle N}$ as a small noise perturbation of the deterministic μ solution of the McKean-Vlasov system

 \Rightarrow N^{-1} plays the role of the "small noise" parameter ε of Freidlin-Wentzell

■ Examples of obtained estimates:

- The mean time spent by $\mu^{\sf N}$ near an ω -limit set,
- **The probability of reaching a given** ω **-limit set before reaching** another one,
- **The probability of traversing a collection of** ω **-limit sets in a** particular order (limit cycles)...

Some interesting questions

- \blacksquare How to numerically compute the rate functions characterizing the LDP of the stationary distributions $\wp^{\textsf{N}}$
	- \Rightarrow Seems to be challenging even in the simpler complete graph context! [Borkar et al.]
- **B** Study the stability properties of the McKean-Vlasov equation \Rightarrow Possible approach: identifying the limit of relative entropies w.r.t $\wp^{\sf N}$ as a possible Lyapunov function [Budhiraja et al.]

References

- D.A. Dawson, A. Sid-Ali, Y.Q. Zhao, 'Propagation of chaos and large deviations in mean-field models with jumps on block-structured networks'. Submitted. arXiv:2012.02870 [math.PR]
- D.A. Dawson, A. Sid-Ali, Y.Q. Zhao, 'Large time behavior for a mean-field model with jumps on block-structured networks'. In preparation
- V.S. Borkar and R. Sundaresan. 'Asymptotics of the invariant measure in mean field models with jumps.' Stochastic Systems. 2012
- **M.I. Freidlin and A.D Wentzell. 'Random Perturbations of** Dynamical Systems.' Springer Berlin Heidelberg, 2012.
- A. Budhiraja, P. Dupuis, M. Fischer, and K. Ramanan. *'Local* stability of Kolmogorov forward equations for finite state nonlinear Markov processes. Electron. J. Probab. 2015.
- S. Yasodharan and R. Sundaresan. 'Large time behaviour and the second eigenvalue problem for finite state mean-field interacting particle systems.' arXiv:1909.03805 [math.PR], Carleton 2019.

Speaker: Yigiang Q. Zhao (Carleton U) [Workshop on MPRT](#page-0-0) at Central South University 28 / 37

Thank you for listening!

Any questions?

Appendix 1: Classical Mean-field model

Take e.g. $\mathcal{Z} = \{1, \ldots, K\}$

- Transition rate matrices $\Lambda(\mu^N(t))=(\lambda_{z,z'}(\mu^N(t)))_{(z'z)\in\mathcal{Z}^2}.$ for some (Lipschitz) functions $\lambda_{\mathsf{z},\mathsf{z}'}$ on $\mathcal{M}_1(\mathcal{Z})$
- Consider the Markov process $(X_n(\cdot), 1 \le n \le N)$: its state space is $\mathcal{K}^{\textit{N}}\Rightarrow \text{Exponential growth!}$
- Alternative idea: track the measure-valued Markov process $\mu_N(\cdot)$ instead: its state space size is of order at most $(N+1)^K$ \Rightarrow Draw conclusions on the original process

Appendix 1: Classical Mean-field model- Law of large numbers

Theorem (Kurtz)

Under some regularity assumptions, if $\mu_N(0) \to \nu$ in probability, then for each $T > 0$, $\mu_N(\cdot) \to \mu(\cdot)$ in probability uniformly on $[0, T]$, where $\mu(\cdot)$ solves the McKean-Vlasov equation

$$
\dot{\mu}(t) = \Lambda(\mu(t))^* * \mu(t),
$$

$$
\mu(0) = \nu
$$

N.B. $\mu_N(\cdot) \in \mathcal{D}([0, T], \mathcal{M}_1(\mathcal{Z}))$ equipped with the metric

$$
\rho_{\mathcal{T}}(\mu,\nu)=\sup_{0\leq t\leq\mathcal{T}}\rho_0(\mu_t,\nu_t),
$$

where $\rho_0(\alpha, \beta)$ generates the weak topology on $\mathcal{M}_1(\mathcal{Z})$, e.g. \mathbf{B}_{Carl} and \mathbf{B}_{carl} and \mathbf{B}_{carl} and \mathbf{B}_{carl} and \mathbf{B}_{carl} and \mathbf{B}_{carl} Speaker: Yigiang Q. Zhao (Carleton U) [Workshop on MPRT](#page-0-0) at Central South University 32 / 37

Appendix 1- Classical Mean-field model-Propagation of chaos

- **■** Let $N \to \infty$, thus $\mu_N(\cdot) \to \mu(\cdot)$ solution of McKean-Vlasov
- \blacksquare Tag a particle in the limit: its evolution is described asymptotically by a Markov process with rates $\Lambda_{z,z'}(\mu(t))$ \Rightarrow At t, it is in state z with probability $\mu(t)(z)$
- \blacksquare Tag k particles:
	- If $(X_n(0), 1 \le n \le N)$ are exchangeable and $\mu_N(0) \to \nu$ in probability, then their states are asymptotically independent at time 0
	- \blacksquare Thanks to the LLN, the evolution is iid across the particles
- Thus: the "chaos" (independence) propagates in time!
- Consequence: the study of one individual gives information on the behavior of the group the group
- N.B. POC and LLN are here equivalent. See, e.g. [Sznitman]

Appendix 2: LDP from the McKean-Vlasov system over finite $[0, T]$

Theorem

Denote $p_{\nu_N}^N = \mathcal{L}(\mu^N)$. Suppose that $\nu_N \to \nu$ weakly. The sequence $(\rho^N_{\nu_N}, N\ge 1)$ obeys a LDP with speed N , and a good rate function $\mathcal{S}_{[0,\,T]}(\mu|\nu).$ Moreover, if a path μ satisfies $S_{[0,T]}(\mu|\nu) < \infty$, then there exist rate families $(\mu_{z,z'}^{j,c}(t),t\in[0,T])$ and $(\mu_{z,z'}^{j,p}(t),t\in[0,T])$ such that, for all $1\leq j\leq r,$

$$
\dot{\mu}_j^c(t) = L_{j,c}(t)^* \mu_j^c(t), \n\dot{\mu}_j^p(t) = L_{j,p}(t)^* \mu_j^p(t),
$$

where $L_{j,c}(t)$, $L_{j,p}(t)$ are the rate matrices associated with the time-varying rates $(l_{z,z'}^{j,c}(t))$, $(l_{z,z'}^{j,p}(t)$ and $L_{j,c}(t)^*$. Furthermore, in this case

$$
S_{[0,T]}(\mu|\nu)=\sum_{j=1}^r\bigg[\alpha_jp_j^c\int_0^T\bigg(\sum_{(z,z')\in\mathcal{E}}(\mu_j^c(t)(z))\lambda_{z,z'}^c(\cdot)\tau^*\bigg(\frac{\mu_{z,z'}^c(t)}{\lambda_{z,z'}^c(\cdot)}-1\bigg)\bigg)dt\\+\alpha_jp_j^p\int_0^T\bigg(\sum_{(z,z')\in\mathcal{E}}(\mu_j^p(t)(z))\lambda_{z,z'}^p(\cdot)\tau^*\bigg(\frac{\mu_{z,z'}^p(t)}{\lambda_{z,z'}^p(\cdot)}-1\bigg)\bigg)dt\bigg].
$$

Speaker: Yigiang Q. Zhao (Carleton U) [Workshop on MPRT](#page-0-0) at Central South University 34 / 37

What the previous theorem tells us?

From LDP of $p^{\mathcal{N}}_{\nu_{\mathcal{N}}}$, for a given path μ ,

$$
\mathbb{P}(\mu^N=\mu) \approx \exp(-N S_{[0,\,T]}(\mu|\nu)), \quad \text{as } N \to +\infty
$$

 \Rightarrow The action functional S characterizes the "difficulty" of the passage of $\mu^{\textit{N}}$ near μ in the time interval $[0,\textit{T}]$

- If $\mathcal{S}_{[0,\,T]}(\mu|\nu)=0$, then μ must be the solution to the McKean-Vlasov equation with initial condition $\mu(0) = \nu$ (the Legendre transform satisfies $\tau^*(0) = 0$) \Rightarrow The McKean-Vlasov path has zero "cost"
- From LDP of the empirical measure we can investigate the LDP of the stationary distribution...

Quasipotential

n Important notion: the quasipotential defined for any $\nu, \xi \in (\mathcal{M}_1(\mathcal{Z}))^{2r}$ as

$$
V(\xi|\nu) = \inf \{ S_{[0,T]}(\mu|\nu) : \mu(0) = \nu, \mu(T) = \xi, T > 0 \},
$$

 \Rightarrow Measures the "difficulty" for the empirical process to move from ν to ξ in finite time

Indices characterizing the passage through compacts sets

Take $L = \{1, 2, ..., l\}$ **the indices corresponding to the** compact sets K_1, K_2, \ldots, K_l

The rate
$$
s_{l'}
$$
, $1 \le l' \le l$ are given by $s_{l'} = W(K_{l'}) - \min_{l'} W(K_{l'})$, where

$$
W(K_i) = \min_{g \in G\{i\}} \sum_{(i,j) \in g} V(K_i, K_j)
$$

with $G\{i\}$ is the W-graph corresponding to $W = i$, with $i \in \{1, \ldots, l\}.$

Carleton Speaker: Yigiang Q. Zhao (Carleton U) [Workshop on MPRT](#page-0-0) at Central South University 37 / 37