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Interacting particle systems and mean-field approach

The interest in IPS started with statistical physics

Pioneer works: Boltzmann, Vlasov, Curie, Wisse, Ising, and
others

The purpose: Understand the global (average) behavior of a
very large number of particles interacting with each other

The mean-field approach aims to obtain a smaller object
through an average over the interactions (dimension
reduction!)

Pioneer work: McKean [1966] studied the mean-field
approach for interacting diffusions
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Classical mean-field model

N symmetric (in distribution) particles interacting with each
other
The state space of each particle is Z: Discrete or Continuous
XN
n (t): state of the nth particle at time t (a Markov chain)

Due to symmetry of the particles, to describe the system, it is
enough to use the coupled dynamics, or the empirical
distribution of all particles across states:

µN(t) =
1

N

N∑
n=1

δXN
n (t) ∈M1(Z), space of prob. measures on Z

⇒ Gives the fraction of particles in each subset of Z.
A picture of global interactions:
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Classical Mean-field model: classical results

Example of the state space: if Z = {1, . . . ,K} (finite state)

Let Λ(µN(t)) = (λz,z ′(µ
N(t)))(z,z ′)∈Z×Z be the rate matrix

over Z (depends on the empirical measure!)

Law of Large numbers: for each T > 0, µN(·)→ µ(·) in
probability uniformly on [0,T ], where µ(·) solves the
McKean-Vlasov equation

µ̇(t) = Λ(µ(t))∗ ∗ µ(t),

µ(0) = ν

where the coefficients of the SDE depend on the distribution
of the solution

Propagation of chaos: if the particles are initially iid, and we
tag finite k particles, then their evolution is asymptotically iid
over any finite time interval!

Consequence: the study of one particle gives information on
the behavior of the population
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What if the interaction graph is not complete?

Suppose the interaction graph is not complete, i.e. not all
particles interact with each other!

Things get more complicated! Why: we lose the global
symmetry between particles

What to do: detect local symmetries and average around
them!

Special case of interest: block-structured graphs!
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The model: Structure of the graph

Consider a block-structured graph G = (V,Ξ), composed of r
blocks (populations) and each node representing a particle

Each block Cj is a clique, i.e. all the Nj nodes are connected
to each other

The nodes of each block Cj are divided into two categories:

Central nodes C c
j : connected only to the nodes of the same

block
Peripheral nodes C p

j : connected to the nodes of the same
block and also to peripheral nodes of the other blocks

We have card(C c
j ) = Nc

j and card(Cp
j ) = Np

j
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The model dynamic

Finite state space: Z = {1, 2, . . . ,K} ⊂ N (colors)

For each block j , (X c
n,j(t), t ≥ 0) is the color of central

(particle) node n at time t; (X p
n,j(t), t ≥ 0) is the color of

peripheral node n at time t
We characterize the system’s state by local empirical
measures:

µc,N
j (t) =

1

Nc
j

∑
n∈C c

j

δX c
n,j (t)

µp,N
j (t) =

1

Np
j

∑
n∈Cp

j

δXp
n,j (t)

Fix a block 1 ≤ j ≤ r :
The neighborhood’s state of n ∈ C c

j is characterized by

µc,N
j (t), µp,N

j (t) (only nodes in the same block)

The neighborhood’s state of n ∈ C p
j is characterized by

µc,N
j (t); µp,N

1 (t), µp,N
2 (t), . . . , µp,N

r (t) (nodes in the same
block and peripheral nodes in other blocks)
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The model dynamic

The central nodes transitions. For n ∈ C c
j , its color X c

n,j(t)
goes from z to z ′ at rate:

λcz,z ′
(
µc,Nj (t), µp,Nj (t)

)
The peripheral nodes transitions. For node n ∈ Cp

j , its

color X p
n,j(t) transits from z to z ′ at rate:

λpz,z ′
(
µc,Nj (t), µp,N1 (t), µp,N2 (t), . . . , µp,Nr (t)

)
Some additional notations:

D([0,T ],Z) the Skorokhod space of cadlag functions from
[0,T ] to Z
M1(D([0,T ],Z)) the set of probability measures on
D([0,T ],Z)
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SDE representation of the system

The Markov chains X c
n,j and X p

n,j can be represented by the
following system of SDE’s

X c
n,j (t) = X c

n,j (0) +

∫
[0,t]×R+

∑
(z,z′)∈E

1Xc
n,j

(s−)=z (z′ − z)1[
0,λc

z,z′
(
µ
c,N
j

(s−),µ
p,N
j

(s−)
)](y)N c

n,j (ds, dy)

X
p
n,j (t) = X

p
n,j (0) +

∫
[0,t]×R+

∑
(z,z′)∈E

1
X
p
n,j

(s−)=z
(z′ − z)1[

0,λ
p
z,z′

(
µ
c,N
j

(s−),µ
p,N
1

(s−),...,µ
p,N
r (s−)

)](y)N p
n,j (ds, dy)

where {N c
n,j , n ∈ C c

j , 1 ≤ j ≤ r} and {N p
n,j , n ∈ Cp

j , 1 ≤ j ≤ r} are

collections of Poisson random measures on R2 whose intensity
measure is the Lebesgue measure on R2

+

Speaker: Yiqiang Q. Zhao (Carleton U) Workshop on MPRT at Central South University 12 / 37



Outline

1 Mean-field model: The homogeneous case

2 Mean-field Models: Heterogeneous case

3 Large scale behavior

4 Large time behavior

Speaker: Yiqiang Q. Zhao (Carleton U) Workshop on MPRT at Central South University 13 / 37



Large-scale behavior: Multi-chaoticity

Recall: Propagation of chaos means that the stochastic
independence of fixed k particles persists as the number of
particles goes to infinity

Theorem
Suppose that the initial conditions converge in distribution towards
ν1,c ⊗ ν1,p · · · νr ,c ⊗ νr ,p. Therefore, under some regularity
conditions, the propagation of chaos (in multi-populations) holds
over any finite interval of time, i.e. for any k ≥ 1,

limN→∞(X c
n,j ,X

p
n,j , 1 ≤ n ≤ k, 1 ≤ j ≤ r))

dist
= (µc1)k ⊗ (µp1)k · · · (µcr )k ⊗ (µpr )k

holds for the topology of the uniform convergence on compact sets,
where µ = µc1 ⊗ µ

p
1 · · ·µcr ⊗ µ

p
r is the distribution of the process(

(X̄ c
n,j(t), X̄ p

m,j(t), t ≥ 0), n ∈ C c
j ,m ∈ Cp

j ; 1 ≤ j ≤ r
)
, solution of a

limiting SDE with initial distribution ν1,c ⊗ ν1,p · · · νr ,c ⊗ νr ,p
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Large-scale behavior: Multi-chaoticity

The limiting process
(
(X̄ c

n,j(t), X̄ p
n,j(t), t ∈ [0,T ]), 1 ≤ j ≤ r

)
is

solution of the following system of SDE’s

X̄ c
n,j(t) = X̄ c

n,j(0) +
∫

[0,t]×R+

∑
(z,z ′)∈E

1X̄ c
n,j (s−)=z(z ′ − z)1[

0,λc
z,z′

(
µcj (s−),µpj (s−)

)](y)N c
n,j(ds, dy),

X̄ p
n,j(t) = X̄ p

n,j(0) +
∫

[0,t]×R+

∑
(z,z ′)∈E

1X̄ p
n,j (s−)=z(z ′ − z)1[

0,λp
z,z′

(
µcj (s−),µp1(s−),...,µpr (s−)

)](y)N p
n,j(ds, dy)

where

µ =
(
µc1, µ

p
1 , · · · , µcr , µ

p
r

)
=
(
L(X̄ c

n,1),L(X̄ p
n,1), . . . ,L(X̄ c

n,r ),L(X̄ p
n,r )
)
∈
(
M1(D([0,T ],Z))

)2r
,
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Large-scale behavior: Laws of Large Numbers

As a consequence of the propagation of chaos result, we
obtain laws of large numbers for the local empirical measures

Corollary (LLN)

Denote µcj = L(X̄ c
n,j), µ

p
j = L(X̄ p

n,j) for 1 ≤ j ≤ r , then, as
N →∞,

µc,Nj = 1
Nc

j

∑
n∈C c

j
δX c

n,j
→ µcj in M1(D([0,T ],Z)) in probability,

µp,Nj = 1
Np

j

∑
n∈Cp

j
δX p

n,j
→ µpj in M1(D([0,T ],Z)) in probability,
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Law of Large numbers: Consequence

From the LLN, we deduce that, as N →∞, the sequence
(µN = (µc,N1 , µp,N1 , . . . , µc,Nr , µp,Nr )) converges weakly towards the
solution µ of the McKean-Vlasov system

µ̇cj (t) = A∗
(µcj (t),µpj (t))

µcj (t),

µ̇pj (t) = A∗
(µcj (t),µp1(t),...,µpr (t))

µpj (t),

µcj (0) = νcj , µ
p
j (0) = νpj ,

1 ≤ j ≤ r , t ∈ [0,T ],

(1)

where A∗ is the adjunct/transpose of A, and

Aµcj (t),µpj (t) =
(
λcz,z ′(µ

c
j (t), µpj (t))

)
(z,z ′)∈Z×Z

is the rate matrix for central nodes in block j , and

Aµcj (t),µp1(t),...,µpr (t) =
(
λpz,z ′(µ

c
j (t), µp1(t), . . . , µpr (t))

)
(z,z ′)∈Z×Z

,

is the rate matrix for peripheral nodes in block j
Speaker: Yiqiang Q. Zhao (Carleton U) Workshop on MPRT at Central South University 17 / 37



Outline

1 Mean-field model: The homogeneous case

2 Mean-field Models: Heterogeneous case

3 Large scale behavior

4 Large time behavior

Speaker: Yiqiang Q. Zhao (Carleton U) Workshop on MPRT at Central South University 18 / 37



Large time behavior: A high level picture

From LLN, as N →∞,

µN(t) = (µN,cj (t), µN,pj (t), 1 ≤ j ≤ r)→ µ(t) = (µcj (t), µpj (t), 1 ≤ j ≤ r)

Thus:

lim
t→∞

[
limN→∞ µ

N(t)
]
→ lim

t→∞

[
µ(t)

]
⇒ amount to a study the McKean-Vlasov system

What about limN→∞
[

limt→∞ µ
N(t)

]
?

For N fixed: if µN is irreducible then there exists a unique
stationary distribution ℘N for µN

What happened for ℘N when N →∞?
⇒ Study the large deviations of (℘N ,N ≥ 1)
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LDP for the stationary distribution

Two distinct scenarios depending on the large time behavior
of the McKean-Vlasov system:

Unique globally asymptotically stable equilibrium ξ0: one
might prove that ℘N → δξ0 , i.e. µN(∞)→ ξ0 in distribution
Multiple ω-limit sets: which of these characterize the limiting
behavior of µN?
In this case we assume that there exist a finite number of
compact sets K1, K2 ,. . . , K` such that every ω-limit set of the
McKean-Vlasov system lies completely in one of the compact
sets Ki . (Hypothesis of Freidlin-Wantzell).
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Case 1: Unique GAS equilibrium ξ0

Theorem
If the McKean-Vlasov equation has a unique globally asymptotically stable
equilibrium ξ0, then the sequence (℘N ,N ≥ 1) satisfies a LDP with speed N
and a good rate function s given by

s(ξ) = inf
µ̂

r∑
j=1

[
αjp

c
j

∫ +∞

0

( ∑
(z,z′)∈E

(µ̂c
j (t)(z))λ

c
z,z′ (·) τ∗

(
l̂ j,cz,z′(t)

λc
z,z′ (·)

− 1

))
dt

+ αjp
p
j

∫ +∞

0

( ∑
(z,z′)∈E

(µ̂p
j (t)(z))λ

p
z,z′ (·) τ

∗
(

l̂ j,pz,z′(t)

λp
z,z′ (·)

− 1

))
dt

]
where the infimum is over all the infinite paths µ̂ that are solutions to the
reversed-time dynamical system

˙̂µc
j (t) = −L̂j,c(t)

∗
µ̂c
j (t),

˙̂µp
j (t) = −L̂j,p(t)

∗
µ̂p
j (t),

for some family of rate matrices L̂j,c and L̂j,p, with initial condition µ(0) = ξ,
terminal condition limt→∞ µ(t) = ξ0, and µ(t) ∈ (M1(Z))2r for all t ≥ 0.
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The intuition behind the previous result

From LDP of ℘N , for a given ξ ∈ (M1(Z))2r ,

P(µN(+∞) ≈ ξ) ≈ exp(−Ns(ξ)), as N → +∞

⇒ The rate function s characterizes the ”difficulty” of the
passage of µN(+∞) near ξ

Interpretation of previous theorem: if µN(+∞) is near ξ, then
this is most likely due to a trajectory that began at ξ0, worked
against the attractor ξ0, and took the lowest cost path µ̂ to ξ
over all possible time duration
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Case 2: Multiple ω-limit sets

Under Freidlin-Wantzell hypothesis: We obtain a similar result
but now we also take the infimum over all the compact sets
Ki !
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Case 2: Multiple ω-limit sets (Cont’d)

Theorem
The sequence of stationary distributions (℘N ,N ≥ 1) satisfies the LDP with
speed N and a good rate function s given by

s(ξ) = inf
l′

inf
µ̂

[
sl′ +

r∑
j=1

[
αjp

c
j

∫ +∞

0

( ∑
(z,z′)∈E

(µ̂c
j (t)(z))λ

c
z,z′ (·) τ∗

(
l̂ j,cz,z′(t)

λc
z,z′ (·)

− 1

))
dt

+ αjp
p
j

∫ +∞

0

( ∑
(z,z′)∈E

(µ̂p
j (t)(z))λ

p
z,z′ (·) τ

∗
(

l̂ j,pz,z′(t)

λp
z,z′ (·)

− 1

))
dt

]]
where the constants sl′ determine the ”difficulty” of passage from one compact
set to another, and the second infimum is over all µ̂ that are solutions to the
reversed-time dynamical system

˙̂µc
j (t) = −L̂j,c(t)

∗
µ̂c
j (t),

˙̂µp
j (t) = −L̂j,p(t)

∗
µ̂p
j (t),

for some family of rate matrices L̂j,c and L̂j,p, with initial condition µ(0) = ξ,
terminal condition limt→∞ µ(t) ∈ Kl′ , and µ(t) ∈ (M1(Z))2r for all t ≥ 0.
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Phenomena from one ω-limit set to another

Let’s summarize:

From LLN: as N →∞, µN → µ ⇒ Use McKean-Vlasov
equation to study the large t behavior
As t →∞, L(µN(∞)) = ℘N ⇒ Use LDP results to study
large N behavior of ℘N

What about: limt→∞ µ
N(t) for large but finite N?

⇒ If multiple ω-limit sets for McKean-Vlasov, we observe
metastable phenomena

Metastable behavior: transitions and exit times from one
ω-limit set to another!
⇒ Freidlin-Wentzell approach: rely on the study of an
embedded Markov chain of states at hitting times of
neighborhood of the ω-limit sets
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Metastable phenomena: some ideas

Adapting the Freidlin-Wentzell approach: view the finite N
system µN as a small noise perturbation of the deterministic µ
solution of the McKean-Vlasov system
⇒ N−1 plays the role of the ”small noise” parameter ε of
Freidlin-Wentzell

Examples of obtained estimates:

The mean time spent by µN near an ω-limit set,
The probability of reaching a given ω-limit set before reaching
another one,
The probability of traversing a collection of ω-limit sets in a
particular order (limit cycles)...
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Some interesting questions

How to numerically compute the rate functions characterizing
the LDP of the stationary distributions ℘N

⇒ Seems to be challenging even in the simpler complete
graph context! [Borkar et al.]

Study the stability properties of the McKean-Vlasov equation
⇒ Possible approach: identifying the limit of relative entropies
w.r.t ℘N as a possible Lyapunov function [Budhiraja et al.]
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Thank you for listening!
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Any questions?
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Appendix 1: Classical Mean-field model

Take e.g. Z = {1, . . . ,K}
Transition rate matrices Λ(µN(t)) = (λz,z ′(µ

N(t)))(z ′z)∈Z2 ,
for some (Lipschitz) functions λz,z ′ on M1(Z)

Consider the Markov process (Xn(·), 1 ≤ n ≤ N): its state
space is KN ⇒ Exponential growth!

Alternative idea: track the measure-valued Markov process
µN(·) instead: its state space size is of order at most
(N + 1)K⇒ Draw conclusions on the original process
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Appendix 1: Classical Mean-field model- Law of large
numbers

Theorem (Kurtz)

Under some regularity assumptions, if µN(0)→ ν in probability,
then for each T > 0, µN(·)→ µ(·) in probability uniformly on
[0,T ], where µ(·) solves the McKean-Vlasov equation

µ̇(t) = Λ(µ(t))∗ ∗ µ(t),

µ(0) = ν

N.B. µN(·) ∈ D([0,T ],M1(Z)) equipped with the metric

ρT (µ, ν) = sup
0≤t≤T

ρ0(µt , νt),

where ρ0(α, β) generates the weak topology on M1(Z), e.g.
bounded-Lipschitz metric, L1 metric...
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Appendix 1- Classical Mean-field model-Propagation of
chaos

Let N →∞, thus µN(·)→ µ(·) solution of McKean-Vlasov

Tag a particle in the limit: its evolution is described
asymptotically by a Markov process with rates Λz,z ′(µ(t))
⇒ At t, it is in state z with probability µ(t)(z)

Tag k particles:

If (Xn(0), 1 ≤ n ≤ N) are exchangeable and µN(0)→ ν in
probability, then their states are asymptotically independent at
time 0
Thanks to the LLN, the evolution is iid across the particles

Thus: the ”chaos” (independence) propagates in time!

Consequence: the study of one individual gives information on
the behavior of the group the group

N.B. POC and LLN are here equivalent. See, e.g. [Sznitman]
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Appendix 2: LDP from the McKean-Vlasov system over
finite [0,T ]

Theorem
Denote pN

νN = L(µN). Suppose that νN → ν weakly. The sequence
(pN
νN ,N ≥ 1) obeys a LDP with speed N, and a good rate function S[0,T ](µ|ν).

Moreover, if a path µ satisfies S[0,T ](µ|ν) <∞, then there exist rate families

(l j,cz,z′(t), t ∈ [0,T ]) and (l j,pz,z′(t), t ∈ [0,T ]) such that, for all 1 ≤ j ≤ r ,

µ̇c
j (t) = Lj,c(t)

∗µc
j (t),

µ̇p
j (t) = Lj,p(t)

∗µp
j (t),

where Lj,c(t), Lj,p(t) are the rate matrices associated with the time-varying
rates (l j,cz,z′(t)), (l

j,p
z,z′(t) and Lj,c(t)

∗. Furthermore, in this case

S[0,T ](µ|ν) =
r∑

j=1

[
αjp

c
j

∫ T

0

( ∑
(z,z′)∈E

(µc
j (t)(z))λ

c
z,z′ (·) τ∗

(
l j,cz,z′(t)

λc
z,z′ (·)

− 1

))
dt

+ αjp
p
j

∫ T

0

( ∑
(z,z′)∈E

(µp
j (t)(z))λ

p
z,z′ (·) τ

∗
(

l j,pz,z′(t)

λp
z,z′ (·)

− 1

))
dt

]
.
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What the previous theorem tells us?

From LDP of pNνN , for a given path µ,

P(µN = µ) ≈ exp(−NS[0,T ](µ|ν)), as N → +∞

⇒ The action functional S characterizes the ”difficulty” of
the passage of µN near µ in the time interval [0,T ]

If S[0,T ](µ|ν) = 0, then µ must be the solution to the
McKean-Vlasov equation with initial condition µ(0) = ν (the
Legendre transform satisfies τ∗(0) = 0)
⇒ The McKean-Vlasov path has zero ”cost”

From LDP of the empirical measure we can investigate the
LDP of the stationary distribution...
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Quasipotential

Important notion: the quasipotential defined for any
ν, ξ ∈ (M1(Z))2r as

V (ξ|ν) = inf{S[0,T ](µ|ν) : µ(0) = ν, µ(T ) = ξ,T > 0},

⇒ Measures the ”difficulty” for the empirical process to move
from ν to ξ in finite time
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Indices characterizing the passage through compacts sets

Take L = {1, 2, . . . , l} the indices corresponding to the
compact sets K1,K2, . . . ,Kl

The rate sl ′ , 1 ≤ l ′ ≤ l are given by
sl ′ = W (Kl ′)−minl ′W (Kl ′), where

W (Ki ) = min
g∈G{i}

∑
(i ,j)∈g

V (Ki ,Kj)

with G{i} is the W -graph corresponding to W = i , with
i ∈ {1, . . . , l}.
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